
  

Combinatorics



  

What is Combinatorics?

 Wide ranging field involving the study of 
discrete objects



  

What is Combinatorics?

 Wide ranging field involving the study of 
discrete objects

 Enumerative Combinatorics
 counting the objects that satisfy certain criteria



  

Permutations and Combinations

 Permutations
 Number of ways of arranging a list of elements
 Order is important

 Combinations
 Number of ways of selecting k elements from a set
 Order is unimportant



  

Permutations and Combinations

 Permutations with repetition



 Permutations without repetition



 Combinations without repetition (Binomial Coefficients)



nk

P n , k  =
n!

n−k !

Cn , k  = nk =
Pn , k 

k!
=

n!
k!n−k !



  

Pascal's Triangle

1

1  1

1  2  1

1  3  3  1

1  4  6  4  1

1  5  10 10  5  1

1  6  15 20 15  6  1

1  7  21 35 35 21  7  1

. . . . . . . . . . . . . .
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Row 3
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Row 5

Row 6

Row 7
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nk = n−1
k n−1

k−1



  

Combinations with repetition

 Combinations with repetition
 nk = nk−1

k = nk−1!
k!n−1!



  

Multinomial Coefficients

 Determine the coefficients of the expansion of

 
 The number of ways of placing n objects into m boxes, 

the ith one being of size k
i

 The number of permutations of a string with length n 
and m distinct letters and with k

i
 denoting the number 

of times the ith letter appears.



 n
k1 , k 2 , k3 ,  , km=

n!
k1!k2!k3!⋯k m!

Note: ∑
i=1

m

k i = n

x1x2⋯xm
n = ∑

k1 , k2 , ... , km
 n
k1 , k2 , ... , km x1

k1 x2
k2⋯xm

k m



  

Stirling numbers

 How many ways are there to partition a set of 
size n into k non-empty subsets?

 How do you calculate S(n, k)?

S n , k  = Sn
k  = {nk}



  

Stirling numbers

 Split problem into disjoint sub-problems
 A partition either contains the nth element by 

itself or as part of another set
 When element is alone the number of other 

partitions is S( n-1, k-1 )
 When elements  is part of another set there are 

S( n-1, k ) ways to partition the set without it 
and k sets to insert it into

 Answer: S( n, k ) = S( n-1, k-1 ) + k.S( n-1, k )



  

Stirling numbers

{nk }= {n−1
k−1} k {n−1

k } where {n1}= {nn}= 1



  

Inclusion Exclusion

 If set A has 5 elements and set B has 5 
elements how many elements does the union 
have?



  

Inclusion Exclusion

A B

1

4

3

2

5

2

7

11

5

3



  

Inclusion Exclusion

A B

1

4

3

2

5

2

7

11

5

3

5+5 = 10



  

Inclusion Exclusion

A

1

4

B

5

2

7

11

3

A∩B

∣A∪B∣= 7



  

Inclusion Exclusion

  ∣A∪B∣=∣A∣∣B∣−∣A∩B∣



  

Inclusion Exclusion

A

B

C

A∩B B∩C

A∩C

A∩B∩C



  

Inclusion Exclusion

A

B

C

A∩B B∩C

A∩C

A∩B∩C

Adding the the sizes of 
each set will give:

So we need to subtract

But then we are missing 
one       so we add it

A

A∩C B∩C

A∩B∩C

B C

A∩B



  

Inclusion Exclusion



  

∣A∪B∣=∣A∣∣B∣−∣A∩B∣

∣A∪B∪C∣=∣A∣∣B∣∣C∣−∣A∩B∣−∣A∩C∣−∣B∩C∣∣A∩B∩C∣



  

Inclusion Exclusion





 

∣A∪B∣=∣A∣∣B∣−∣A∩B∣

∣A∪B∪C∣=∣A∣∣B∣∣C∣−∣A∩B∣−∣A∩C∣−∣B∩C∣∣A∩B∩C∣



  

Inclusion Exclusion

 COCI Contest #4 Question 5 (Simplified)
 There is an n m grid with safes at each grid ⨯

position
 n <= 2000; m <= 1000 000 000
 There's a guard at bottom left-hand corner (0,0)
 How many safes can he see?

 He can see the ones at (x,y) such that x and y are 
co-prime



  

Inclusion Exclusion

For each i = 1 to n

Factorise i into prime factors f1, f2, ... , fk

Let Mj be the set of multiples of fj less than or equal to m

Position (i, x), such that x   M∈ j, can't be seen because i and 
x necessarily share a factor.

Let X = M1   M∪ 2   ...   M∪ ∪ k

Therefore X contains all of the positions that can't be seen

And |X'| = m­|X| safes can be seen in this column

Add this to the total.

Note: ∣M j∣=⌊ m
f j ⌋



  

Inclusion Exclusion

 Note: inclusion-exclusion principal is slow:

               where k is the number of sets.
 But in many cases it works.
 In this case, there are at most 4 distinct prime 

factors, so it easily runs in time.
 The maximum number of distinct factors is 4, 

because the smallest number with 5 distinct prime 
factors is the product of the first 5 primes: 
2*3*5*7*11 = 2310 and n can only go up to 2000.

O2k 



  

Burnside's lemma

 How many ways are there to colour a ring of 12 
objects with 3 colours taking rotations into 
account?



  

Burnside's lemma

 How many ways are there to colour a ring of 12 
objects with 3 colours taking rotations into 
account?

 If you ignore rotations it is trivial: 312



  

Burnside's lemma

 How do you take equivalent solutions into 
account?



  

Burnside's lemma

 Decide what makes solutions equivalent.
 These are the transformation that you can perform 

on a solution without changing it into another 
distinct solution.



  

Burnside's lemma

 Decide what makes solutions equivalent.
 These are the transformation that you can perform 

on a solution without changing it into another 
distinct solution.

 In this case they are
 Identity - NB Rotate right 4 Rotate right 8
 Rotate right 1 Rotate right 5 Rotate right 9
 Rotate right 2 Rotate right 6 Rotate right 10
 Rotate right 3 Rotate right 7 Rotate right 11



  

Burnside's lemma

 Consider each transform
 How many solutions remain unchanged after the 

transform is applied?

 Sum the results for each transform and divide 
by the number of transforms.



  

Burnside's lemma

 Identity
 All solutions remain the same (by definition):

 Rotate right 1
312

A B C D E F G H I J K L
L A B C D E F G H I J K
For the solution not to change: A must equal L, B 
must equal A, etc. Because A = L and B = A, B = L, 
etc. Therefore they are all equal.



  

Burnside's lemma

 Identity
 All solutions remain the same (by definition):

 Rotate right 1
 Only the solutions with all objects equal remain the 

same: 

 Rotate right 2

312

31

A B C D E F G H I J K L
K L A B C D E F G H I J



  

Burnside's lemma

 Identity
 All solutions remain the same (by definition):

 Rotate right 1
 Only the solutions with all objects equal remain the 

same: 

 Rotate right 2
 Only the solutions with the same objects in 2 cycles 

remain the same: 

312

31

32



  

Burnside's lemma

 Rotate right 3
 Only the solutions with the same objects in 3 cycles 

remain the same:  

 Rotate right 4
 Only the solutions with the same objects in 4 cycles 

remain the same: 

 Rotate right 5
 Only the solutions with all objects equal remain the 

same: 

33

34

31



  

Burnside's lemma

 Rotate right 6
 Only the solutions with the same objects on 

opposite sides of ring:  

 Rotate right 7 = Rotate left 5 = Rotate right 5
 Rotate right 8 = Rotate left 4 = Rotate right 4
 Rotate right 9 = Rotate left 3 = Rotate right 3
 Rotate right 10 = Rotate left 2 = Rotate right 2
 Rotate right 11 = Rotate left 1 = Rotate right 1

36



  

Burnside's lemma

 Sum up the results and divide
 312 .4 312.322.332.3436

12
= 44368



  

Burnside's lemma

 Sum up the results and divide


It's that easy: just bear in mind the numbers you 
sum are not always going to be powers. In fact, 
you may need to think about each transform 
separately.

3124.312.322.332.3436

12
= 44368



  

Calculating Combinations

function combination( n, k )

c = 1

for i = 0 to k­1

c = c * (n­i) / (i+1) // not *=

return c



  

Calculating Combinations

 Another method is to pre-compute Pascal's 
triangle and use it as a look-up table for 
combinations.

 This is useful if many different combinations 
need to be computed, as long as n does not get 
too large.



  

TRICKS

 Dividing by k! to remove permutations
 Splitting problem into 2 disjoint sub-problems
 Distinguished Element – make one element 

special

 Inclusion-exclusion
 Burnside's lemma
 DP
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